[Menu]>[Electron circuit engineering introduction]>[Assembly process]>[Circuit operation explanation]


Logarithm Table


Natural logarithm

When using the component of the capacitor and so on with the electronic circuits,
the logarithm must be computed to look for the electric current which flows through the circuit.
The logarithm computation can be computed with the function computer but I show the tables of logarithm in this page.

The formula is shown below and it looks for the X.
e is the base of the natural logarithm and the value is 2.71828.

n = ex

It becomes the following when changing into the formula which looks for the X.

x = logen

So as not to confuse with the common logarithm("log10" or it is simply expressed with "log"),
"loge" is sometimes expressed with the "ln".
x = ln n
In case of n=1, it becomes x=0 and when the n is less than 1, x becomes the negative value.
When the n is less than 1, it becomes the same as the one to have made x which is due to the value of 1/n negative.

The natural logarithm table (Equal to or less than 1.0)
nlogennlogennlogennlogen
0.01-4.605170.26-1.347070.51-0.673340.76-0.27443
0.02-3.912020.27-1.309330.52-0.653920.77-0.26136
0.03-3.506550.28-1.272960.53-0.634880.78-0.24846
0.04-3.218870.29-1.237880.54-0.616180.79-0.23572
0.05-2.995730.30-1.203970.55-0.597830.80-0.22314
0.06-2.813410.31-1.171180.56-0.579820.81-0.21072
0.07-2.659260.32-1.139430.57-0.562120.82-0.19845
0.08-2.525730.33-1.108660.58-0.544720.83-0.18633
0.09-2.407940.34-1.078810.59-0.527630.84-0.17435
0.10-2.302580.35-1.049820.60-0.510820.85-0.16252
0.11-2.207270.36-1.021650.61-0.494300.86-0.15082
0.12-2.120260.37-0.994250.62-0.478030.87-0.13926
0.13-2.040220.38-0.967580.63-0.462030.88-0.12783
0.14-1.966110.39-0.941610.64-0.446290.89-0.11653
0.15-1.897120.40-0.916290.65-0.430780.90-0.10536
0.16-1.832580.41-0.891600.66-0.415510.91-0.09431
0.17-1.771960.42-0.867500.67-0.400470.92-0.08338
0.18-1.714800.43-0.814190.68-0.385660.93-0.07257
0.19-1.660730.44-0.820980.69-0.371060.94-0.06187
0.20-1.609440.45-0.798510.70-0.356670.95-0.05129
0.21-1.560650.46-0.776530.71-0.342490.96-0.04082
0.22-1.514120.47-0.755020.72-0.328500.97-0.03046
0.23-1.469680.48-0.733970.73-0.314710.98-0.02020
0.24-1.427110.49-0.713350.74-0.301100.99-0.01005
0.25-1.386290.50-0.692140.75-0.287681.00-0.00000



The natural logarithm table (Equal to or more than 1.0)
nlogennlogennlogennlogen
1.00.000003.01.09861
5.0
1.60944
25.0
3.21887
1.10.095313.11.13140
6.0
1.79176
26.0
3.25809
1.20.182323.21.16315
7.0
1.94591
27.0
3.29583
1.30.262363.31.19392
8.0
2.07944
28.0
3.33220
1.40.336473.41.22377
9.0
2.19722
29.0
3.36729
1.50.405463.51.2527610.02.30258
30.0
3.40119
1.60.470003.61.2809311.02.39789
40.0
3.68888
1.70.530633.71.3083312.02.48491
50.0
3.91202
1.80.587793.81.3350013.02.56495
60.0
4.09434
1.90.641853.91.3609714.02.63905
70.0
4.24849
2.00.693144.01.3862915.02.70805
80.0
4.38202
2.10.741934.11.4109916.02.77259
90.0
4.49981
2.20.788454.21.4350817.02.83321100.04.60517
2.30.832914.31.4586118.02.89037200.05.29832
2.40.875474.41.4816019.02.94444300.05.70378
2.50.916294.51.5040820.02.99573400.05.99146
2.60.955514.61.5260521,03.04452500.06.21461
2.70.993254.71.5475622,03.09104600.06.39693
2.81.029624.81.5686123.03.13549700.06.55108
2.91.064714.91.5892324.03.17805800.06.68461




Common logarithm

At the electronic circuits, the common logarithm(the logarithm having base 10) is used for the thing except above-mentioned natural logarithm.

n = 10x

x = log10n

This value is used when it expresses the mu factor and so on and compares the two values.
The common logarithm is used for the dB ( decibel ).
The noise to the electric signal sometimes show the 1/1000 or 1/10000 values and so on.
It shows in the dB because the number of the figures increases when displaying just as it is.

In case of the voltage ratio : dB = 20 log10 (V1/V2)

In case of the electric power ratio : dB = 10 log10 (P1/P2)

It represents as -60 dB in case of V1=0.001 V , V2=1 V.

When the voltage ratio is twice, it is 6 dB.
When the electric power ratio is twice, it is 3 dB.


The common logarithm table
nlog10nnlog10nnlog10nnlog10n
0.0001-4.000001.00.000003.00.477125.00.69897
0.001-3.000001.10.041393.10.491365.10.70757
0.01-2.000001.20.079183.20.505155.20.71600
0.02-1.698971.30.113943.30.518515.30.72427
0.03-1.522871.40.146123.40.531485.40.73239
0.04-1.397941.50.176093.50.544065.50.74036
0.05-1.301031.60.204123.60.556305.60.74819
0.06-1.221841.70.230453.70.568205.70.75587
0.07-1.154901.80.255273.80.579785.80.76342
0.08-1.096911.90.278753.90.591065.90.77085
0.09-1.045752.00.301034.00.602066.00.77815
0.1-1.000002.10.322224.10.612786.10.78533
0.2-0.698972.20.342424.20.623256.20.79239
0.3-0.522882.30.361724.30.633476.30.79934
0.4-0.397942.40.380214.40.643456.40.80618
0.5-0.301032.50.397944.50.653216.50.81291
0.6-0.221842.60.414974.60.662756.60.81954
0.7-0.154902.70.431364.70.672106.70.82607
0.8-0.096912.80.447154.80.681246.80.83251
0.9-0.045752.90.462394.90.690196.90.83885

nlog10nnlog10nnlog10n
7.00.845099.00.95424
20.0
1.30103
7.10.851269.10.95904
21.0
1.32221
7.20.857339.20.96379
22.0
1.34242
7.30.863329.30.96848
23.0
1.36172
7.40.869239.40.97312
24.0
1.38021
7.50.875069.50.97772
25.0
1.39794
7.60.880819.60.98227
26.0
1.41497
7.70.886499.70.98677
27.0
1.43136
7.80.892099.80.99122
28.0
1.44715
7.90.897629.90.99563
29.0
1.46239
8.00.9030910.01.00000
30.0
1.47711
8.10.9084811.01.04139
40.0
1.60206
8.20.9138112.01.07918
50.0
1.69897
8.30.9190713.01.11394
60.0
1.77815
8.40.9242814.01.14612
70.0
1.84509
8.50.9294115.01.17609
80.0
1.90309
8.60.9345016.01.20142
90.0
1.95424
8.70.9395217.01.23044
100.0
2.00000
8.80.9444818.01.25527
1000.0
3.00000
8.90.9493919.01.2787510000.04.00000